
The identification of human decision strategies has been 
of particular interest for both academics and practitioners. 
Understanding decision makers’ cognitive processes not 
only allows us to infer the decision strategy used, but also 
makes it possible to predict future decisional behavior and 
decision outcomes (Payne, Braunstein, & Carroll, 1978). 
Furthermore, knowing people’s decision strategies facili-
tates the design of decision support systems (Browne, Pitts, 
& Wetherbe, 2007; A. L. Montgomery, Hosanagar, Krish-
nan, & Clay, 2004; Payne, Bettman, & Johnson, 1993).

Since the mid-1960s, a large body of research has in-
vestigated the cognitive processes underlying individual 
decision making.1 In most studies, one of two method-
ologically distinct research approaches has been used: 
structural or procedural. Structural approaches describe 
the relation between information stimuli (input) and de-
cision responses (output) to infer the decision strategy 
used (Abelson & Levi, 1985; Brehmer, 1994; Dawes, 
1979; Einhorn, Kleinmuntz, & Kleinmuntz, 1979; Ford, 
Schmitt, Schechtmann, Hults, & Doherty, 1989; Westen-
berg & Koele, 1994). In the structural-modeling paradigm, 
decision behavior is investigated by fitting mathematical 
models to the relation between the attribute values of op-
tions (input) and the final response (output)—that is, ei-
ther the statement of one preferred option or a rank order 
of options (Billings & Scherer, 1988).

The major criticism regarding the use of structural 
models in studying decision processes concerns two 
issues (Ford et al., 1989; Payne et al., 1978; Svenson, 
1979). First, since structural models focus on the rela-
tion between attribute values and the final response of 
decisions, they are often said to be limited, because they 
do not investigate decision processes directly. Second, 

other models, such as compensatory and noncompensa-
tory ones, have often been shown to fit the same set of 
choices equally well (Dawes & Corrigan, 1974; Harte & 
Koele, 2001;  Yntema & Torgerson, 1961).

As a result of the limitations of structural models, 
process-tracing techniques were developed to directly un-
cover the cognitive processes that take place between the 
onset of a stimulus and the decision maker’s response. In 
most process-tracing studies, stimuli are attribute values 
that are presented in an information display matrix (Ford 
et al., 1989). An information display matrix consists of 
at least two options that are characterized by at least two 
attributes. At the beginning of a choice experiment, all 
boxes in the matrix are closed. To arrive at the final deci-
sion, a participant has to open boxes of the matrix. While 
the participants open a new box, the previously opened 
box closes. Hence, during the experiment, there is always 
only one box opened at a time. After the final response 
has been given, the researcher can analyze the informa-
tion acquisition behavior, inferring participants’ cognitive 
processes and, thereby, the decision strategy used.

The variety of process-tracing techniques is large. 
During the past decades, the following techniques have 
been developed and continuously enhanced: (1) trac-
ing of eye movements (Just & Carpenter, 1976; Lohse 
& Johnson, 1996; Russo, 1978a, 1978b; Russo & Rosen, 
1975); (2) information display boards (Arch, Bettman, & 
Kakkar, 1978; Payne, 1976; Wilkins, 1964); (3) comput-
erized process tracing, such as Mouselab (Payne et al., 
1993), ISLab (G. J. Cook & Swain, 1993), ISCube (Ta-
batabai, 1998), or MouseTrace (Jasper & Shapiro, 2002); 
(4) phased narrowing (Jasper & Levin, 2001; Levin & Jas-
per, 1995); (5) active information search (Huber, Wider, 
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plication of quantitative and qualitative process-tracing 
techniques. Payne (1976), for example, used information 
boards and verbal protocols; that is, participants had to 
“think aloud” while acquiring pieces of information se-
quentially and making their final decision. Furthermore, 
Newell and Simon (1972) claimed that adding eye fixa-
tions to the standard analysis of verbal protocols facili-
tated the identification of decision strategies. However, 
there is empirical evidence that “thinking aloud”—if 
carried out retrospectively rather than concurrently—
often yields unreliable data on decision processes, due to 
memory distortion, interpretation, and an inability to re-
call facts, which were not encoded in long-term memory 
(Ericsson & Simon, 1984; Nisbett & Wilson, 1977; Todd 
& Benbasat, 1987).

To identify the decision strategy used by individuals in 
experimental decision situations, researchers from differ-
ent academic fields stress the importance of multimethod 
approaches that combine elements of both structural ap-
proaches and process-tracing techniques (Costa-Gomes, 
Crawford, & Broseta, 2001; Einhorn et al., 1979; Harte & 
Koele, 2001; Payne et al., 1978; Svenson, 1979). To our 
knowledge, a comprehensive theoretical framework that 
allows for the identification of individual decision strat-
egies in a nonrisky multiattribute decision environment 
does not yet exist.4 In this article, we present a classifica-
tion method that applies a multimethod approach.

The remainder of this article is structured as follows. 
In the next section, 13 decision strategies will be dis-
cussed and described on the basis of nine characteristics. 
In the subsequent section, we will introduce four new 
metrics. We will combine them into an algorithm, which 
allows for the identification of most of 13 decision strat-

& Huber, 1997; Williamson, Ranyard, & Cuthbert, 2000); 
and finally, (6) verbal protocols (Ericsson & Simon, 1980; 
Newell & Simon, 1972; Nisbett & Wilson, 1977).2 Tech-
niques 1–4 can be regarded as quantitative, whereas Tech-
niques 5 and 6 are qualitative in nature.

To investigate information acquisition behavior and to 
infer each person’s cognitive strategy in a nonrisky mul-
tiattribute decision situation, several metrics have been 
developed (sorting by the date of their publication): de-
cision time (Hogarth, 1975; Pollay, 1970); proportion of 
information searched, search index, and variability in 
the amount of information searched per option (Payne, 
1976); reacquisition rate (Jacoby, Chestnut, Weigl, & 
Fisher, 1976); variability in the amount of information 
searched per attribute and a contingency measure (Klay-
man, 1982); total amount of processing, total amount of 
time spent on the information in the boxes, and average 
time spent per item of information acquired (Payne et al., 
1993); a strategy measure (Böckenholt & Hynan, 1994); 
and a multiple- step transition index (Ball, 1997).3

Although these metrics make possible the identification 
of decision strategy types, they usually cannot be used to 
identify a particular decision strategy precisely. For example, 
Payne’s (1976, p. 376) search index (SI) indicates the “direc-
tion of search” that can be either “interdimensional” (option-
wise) or “intradimensional” (attribute-wise). Since there are 
many decision strategies that imply either an option-wise or 
an attribute-wise search (see Table 1), SI does not allow for 
the precise identification of a particular decision strategy.

Even if several of the above-mentioned metrics are 
used together, it is seldom possible to precisely identify a 
particular decision strategy (Ford et al., 1989). Therefore, 
some researchers have argued for the complementary ap-

Table 1 
Characteristics of Decision Strategies

Characteristic  ADD  DIS  DOM  EBA  EQW  LEX  LIM  LVA  MAJ  MAU  MCD  REC  SAT

1. Utility values ignored? 
Yes (Y) vs. no (N)

N Y N Y N Y N N N N N Y Y

2. Option-based (O) vs. 
attribute-based (A) search

A O A A O A O O A O A A O

3. Consistent (C) vs. selective (S) 
across attributes

C S C S C S C C C C C S S

4. Consistent (C) vs. selective (S) 
across options

S S C S C S C C C C S S S

5. Elimination of options prior to 
final choice? Yes (Y) vs. no (N)

Y Y N Y N Y N N N N Y Y Y

6. Attribute weights used? 
Yes (Y) vs. no (N)

N N N Y N Y Y N N Y N Y N

7. Cutoff (aspiration) levels used? 
Yes (Y) vs. no (N)

N Y N Y N N N N N N N N Y

8. Compensatory (C) vs. 
noncompensatory (N)

C N N N C N N N C C C N N

9. Quantitative (QN) vs. 
qualitative (QL) reasoning

QN QL QL QL QN QL QL QN QN QN QN QL QL

Note—Payne, Bettman, and Johnson (1993, p. 32) have classified the additive difference strategy (ADD), elimination-by-aspects strategy (EBA), 
equal weights strategy (EQW), lexicographic strategy (LEX), multiattribute utility model (MAU), majority of confirming dimensions strategy 
(MCD), and satisficing heuristic (SAT). Hastie and Dawes (2001, pp. 232–234) have classified the disjunctive strategy (DIS), dominance strategy 
(DOM), and recognition heuristic (REC) on the basis of five attributes in each case. Therefore, our contribution to the 13 3 9 matrix is 67 new boxes 
(57%). LIM, least important minimum heuristic; LVA, least variance heuristic; MAJ, majority strategy.
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option, and so on. The chosen option has won all compari-
sons (Tversky, 1969).

2. The disjunctive strategy (DIS) first sets cutoff points 
on the attributes and then looks for the first option that is at 
least as good as the cutoff value on any attribute (Coombs, 
1964; Dawes, 1964; Einhorn, 1970, 1971).

3. The dominance strategy (DOM) chooses the option 
that is at least as good as every other option on all at-
tributes and better on at least one attribute (Lee, 1971; 
H. Montgomery, 1983).

4. The elimination-by-aspects strategy (EBA) elimi-
nates options that do not meet the cutoff value for the most 
important attribute. This elimination process is repeated 
for the second most important attribute. Processing con-
tinues until a single option remains (Tversky, 1972).

5. The equal weights strategy (EQW) chooses the op-
tion with the highest overall utility score that is defined 
as the sum of an option’s attribute utilities. In contrast to 
MAU (see Number 10 below), EQW simplifies decision 
making by ignoring attribute weights (Dawes, 1979; Ein-
horn & Hogarth, 1975).

6. The lexicographic strategy (LEX) selects the option 
with the best value on the most important attribute. If there 
is not one but two or more options with a best value, LEX 
selects the option with the best value on the second most 
important attribute, and so on (Fishburn, 1974).

7. The least important minimum heuristic (LIM) first 
determines the worst value of each option and then 
chooses the option with the least important worst value 
(Jungermann et al., 2005).

8. The least variance heuristic (LVA) chooses the op-
tion with the lowest variance across the attribute values. 
LVA makes sense only for decision situations in which no 
dominant option exists (Jungermann et al., 2005).

9. The majority strategy (MAJ) chooses the option with 
the highest number of dominant attribute values (Bowman 
& Colantoni, 1973; Inada, 1964, 1969; Sen, 1966; Sen & 
Pattanaik, 1969).

10. The multiattribute utility model (MAU) chooses the 
option with the highest weighted overall utility score that is 
defined as the sum of the weighted attribute utilities. MAU 
is usually viewed as the normative rule (Anderson, 1974; 
Keeney & Raiffa, 1976; von Winterfeldt & Fischer, 1975).

11. The majority of confirming dimensions strategy 
(MCD) involves processing pairs of options (like ADD). 
The values for each of the two options are compared on 
each attribute. The option with the majority of winning 
attribute values is retained and is then compared with the 
next option. The process of pairwise comparison stops if 
all options have been evaluated and the final winning op-
tion has been identified (Russo & Dosher, 1983; Wright 
& Barbour, 1977).

12. The recognition heuristic (REC) chooses the option 
with the best value on the attribute name recognition. REC 
can be considered as a special case of LEX, because REC 
selects the option with the best value on the most important 
attribute—namely, name recognition. If there is not one 
but two or more options with a best value, REC selects the 
option with the best value on the second most important 
attribute, and so on (Goldstein & Gigerenzer, 2002).6

egies. On the basis of this algorithm, we will present a 
computer program, called DecisionTracer, that can be 
used to identify decision strategies. The final section 
outlines the conclusions, limitations, and applications 
of our approach.

Decision Strategies
In close resemblance to Payne, Bettman, Coupey, and 

Johnson (1992), we define a decision strategy as a se-
quence of operations used to transform an initial stage of 
knowledge into a final goal state of knowledge in which the 
decision maker feels that the decision problem is solved.

Several characteristics describe a decision strategy 
(Hastie & Dawes, 2001; Jungermann, Pfister, & Fischer, 
2005; Payne et al., 1993). Hence, if one wants to distin-
guish decision strategies from each other, these character-
istics allow for discrimination. First, some decision strate-
gies do not process all attribute (utility) values available, 
whereas others do. Hence, strategies can be distinguished 
by the amount of information processed. Second, infor-
mation processing is either option-wise or attribute-wise. 
In option-wise processing, the attribute values of a single 
option are considered before information about the next 
option is processed. In attribute-wise processing, the val-
ues of several options on a single attribute are processed 
before information about a further attribute is processed. 
Third, strategies can be distinguished by the degree to 
which the amount of processing is consistent or selective 
across attributes—that is, whether the same amount of in-
formation is examined for each attribute or whether it var-
ies. Fourth, whether the amount of processing is consis-
tent or selective cannot be assessed only for attributes, but 
also for options. Fifth, decision strategies differ with re-
gard to the elimination of options prior to the final choice. 
Sixth, some decision strategies take into consideration the 
importance of each attribute; that is, they use attribute 
weights, whereas others do not. Seventh, some decision 
strategies use cutoff (aspiration) levels, whereas others do 
not. Eighth, decision strategies can be distinguished by 
whether they allow for compensating for a bad value on 
one attribute with a good value on another attribute. If so, 
such so-called compensatory strategies require trade-offs 
among attributes, whereas noncompensatory strategies 
do not. Ninth, decision strategies differ with regard to the 
degree of quantitative and qualitative reasoning used. In 
general, strategies that involve summing, subtracting, and/
or multiplying values, as well as counting, are considered 
to be quantitative. In contrast, strategies that simply com-
pare values are regarded as qualitative.

The following list summarizes and defines 13 decision 
strategies.5 Table 1 compares the 13 decision strategies 
on the basis of the nine characteristics. In the Classifica-
tion Method section, we demostrate that six of the nine 
characteristics can be used to develop metrics that are the 
fundamental elements of our classification method.

1. The additive difference strategy (ADD) compares 
two options at a time, attribute by attribute. Then the dif-
ferences across the attributes are summed to provide a 
single overall difference score across all attributes for that 
pair of options. The winner is then compared with the next 
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pant will move to the next option. This transition from one 
option to another option can be either an attribute-wise or a 
mixed transition. Any of the four strategies predicts that

 AT 1 MT 5 o 2 1, (2)

where AT is the number of attribute-wise transitions and 
MT is the number of mixed transitions with 0 # AT # 
(o 2 1); 0 # MT # (o 2 1); AT 1 MT $ 1.

In the following, we simulate three different informa-
tion acquisition patterns for two different choice matrices 
(a 5 3 3 and a 5 3 5 matrix—i.e., an asymmetrical and 
a symmetrical choice matrix).7 Then we demonstrate the 
calculation of OT and AT 1 MT. We use both asymmetri-
cal and symmetrical choice matrices, because the valid-
ity of a metric can be influenced by the proportion of the 
number of options and attributes in a matrix (Böckenholt 
& Hynan, 1994).

Suppose, for example, a choice matrix has five options 
and three attributes. In this matrix, OT 5 10 and AT 1 
MT 5 4 (see the top row in Figure 2). With five options 
and five attributes, OT 5 20 and AT 1 MT 5 4 (see the 
bottom row in Figure 2). Furthermore, the left column in 
Figure 2 shows simulations in which MT 5 0; the middle 
column shows simulations in which AT 5 0; and the right 
column simulates a blend of OT, AT, and MT.

For any choice matrix of the size a * o, we can calculate 
the ratio OT/(AT 1 MT ):

 OT/(AT 1 MT ) 5 [(a 2 1) * o]/(o 2 1). (3)

The more a participant’s ratio deviates from the ratio in 
Equation 3, the less likely it is that this participant has 
used EQW, LIM, LVA, or MAU. Equation 3 is context 
sensitive because it allows predicting different ratios for 
different choice matrix dimensions.

Practically, our computer program DecisionTracer, 
described below (Figure 4), uses a tolerance limit of x 
percent to classify search patterns as EQW, LIM, LVA, 
and MAU. That is, if the empirical ratio of option-wise 
transitions to attribute-wise and mixed transitions deviates 
no more than x percent from the predicted ratio in Equa-
tion 3, a strategy is identified as EQW, LIM, LVA, and 
MAU. If not, DecisionTracer classifies search patterns as 
DIS or SAT. If one only classified ratios as EQW, LIM, 
LVA, or MAU when the empirical ratio resembled exactly 
the predicted ratio, one would hardly identify any of these 

13. The satisficing heuristic (SAT) considers options 
sequentially, in the order in which they occur in the choice 
set. The value of each attribute for a particular option is 
considered to see whether it meets a predetermined cutoff 
(aspiration) level for that attribute. If any attribute fails to 
meet the level, the option is rejected, and the next option 
is considered. The first option that satisfies the aspiration 
level for each attribute is chosen (Simon, 1955).

Classification Method
In the following, we will describe our classification 

method. The method consists of four metrics and a proce-
dure for how to use them. The first three metrics are pro-
cess based, whereas the fourth metric is outcome based. 
At the beginning of the description of every metric, we 
state those characteristics of decision strategies (Table 1) 
that we have used to develop the particular metric.

Metric 1: Ratio of option-wise transitions to 
attribute- wise and mixed transitions. EQW, LIM, 
LVA, and MAU consider all available utility values and 
further imply an option-wise search (see Table 1). In the 
following, we will make use of this particular combina-
tion to discriminate EQW, LIM, LVA, and MAU from the 
remaining nine strategies.

Metric 1 concerns the ratio of option-wise transitions 
to attribute-wise and mixed transitions. A transition is 
defined as option-wise if a participant opens two boxes 
within an option and as attribute-wise if a participant 
opens two boxes within an attribute. Mixed transitions are 
both option-wise and attribute-wise (see Figure 1).

Consider a choice matrix containing o options and a attri-
butes. EQW, LIM, LVA, and MAU are strategies that do not 
ignore utility values and that imply an option-wise search. 
Within one option, there are a attributes. Thus, a participant 
using one of the four decision strategies makes (a 2 1) 
option- wise transitions within one option. Multiplied by the 
number of options o, any of the four strategies predicts that 
the number of option-wise transitions for a choice matrix is

 OT 5 (a 2 1) * o, (1)

where OT is the number of option-wise transitions and 
a and o are the number of attributes and options of the 
choice matrix, respectively.

After a participant has opened all the boxes within an 
option, EQW, LIM, LVA, and MAU predict that the partici-

Option

Attribute

1 2

1

2

Option-Wise Transition

1 2
Option

Attribute

1

2

Attribute-Wise Transition

1 2
Option

Attribute

1

2

Mixed Transition

Figure 1. Three types of transitions. Basically, a fourth type of transition is theoreti-
cally possible—namely, when a participant immediately reaccesses the same piece of 
information. However, there is empirical evidence that this type of transition does not 
reflect an important component of decision strategies (Ball, 1997), and it is therefore 
not considered.
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How much time will participants using ADD or MCD 
spend on the options? Consider a choice problem with two 
options. A participant using ADD or MCD will compare 
all attribute pairs and thus look at each option equally long 
(Klayman, 1982; Todd & Benbasat, 1991). This participant 
will look at two options with a ratio of 1:1 (Table 2). Next, 
consider a choice problem with three rather than two op-
tions. A participant using ADD or MCD will compare the 
utility values of Options 1 and 2. Assuming that Option 1 
outperforms Option 2, the participant will then compare 
Options 1 and 3. In total, the participant has looked at four 
options (1 and 2, 1 and 3) with a time ratio of 2:1:1. That 
is, this participant looked twice as long at Option 1 as at 
Options 2 or 3. A ratio of 2:1:1, 1:2:1, or 1:1:2 thus indi-
cates that participants are using ADD or MCD, whereas a 
ratio of, for instance, 2:2:2 or 3:1:1 does not.

Table 2 lists simulations of possible ADD and MCD 
ratios for choice matrices with different numbers of op-
tions. Note that these ratios are independent of the number 

four strategies.8 Hence, we recommend using an x-percent 
tolerance limit to give these four strategies a “fair” chance 
to be identified. Following signal detection theory (Green 
& Swets, 1966), increasing the tolerance limit x increases 
the chance of identifying the EQW, LIM, LVA, and MAU 
strategies correctly and identifying the DIS and SAT strat-
egies incorrectly (Type I error). Decreasing the tolerance 
limit x, in contrast, results in the reversed pattern by in-
creasing the chance of identifying DIS and SAT correctly 
but identifying the EQW, LIM, LVA, and MAU strategies 
incorrectly (Type II error). Robustness checks can show 
how much the classification results depend on the levels 
of the tolerance limit x.

Metric 2: Ratio of time spent on options. ADD’s 
and MCD’s information acquisition are consistent across 
attributes (i.e., the same amount of information is exam-
ined for each attribute), but selective across options (i.e., 
a varying amount of information is processed for each 
option; see Table 1). This particular combination allows 
for identifying ADD and MCD.

Table 1 depicts the fact that ADD, DOM, EQW, LIM, 
LVA, MAJ, MAU, and MCD predict that no utility val-
ues are ignored in the decision process. That is, partici-
pants open all the boxes in the choice matrix. If the boxes 
contain utility values (rather than attribute values that are 
represented on their natural scales), all the boxes need 
the same time for processing utility values.9 If so, DOM, 
EQW, LIM, LVA, MAJ, MAU, and REC predict that par-
ticipants look at all options equally long, and the ratio of 
time spent on the options thus equals 1:1: . . . :1, where 
the number of 1s represents the number of options in the 
choice problem.
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Figure 2. Simulations of Metric 1 using the equal weights strategy (EQW), the least important minimum heuristic (LIM), the least 
variance heuristic (LVA), and the multiattribute utility model (MAU).

Table 2 
Simulations for Metric 2 Using the Additive Difference or the 

Majority of Confirming Dimensions Strategy

Number of 
Options

 Sum of Options Looked 
At (With Repetitions)

 Possible Ratios 
of Time Spent on Options

2 2 1:1
3 4 2:1:1
4 6 2:2:1:1 or 3:1:1:1
5 8 4:1:1:1:1 or 3:2:1:1:1 or 

2:2:2:1:1

o 2 * (o 2 1)

Note—o, number of options in the choice matrix.
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indicates that an option has surpassed the cutoff level on 
a particular attribute, whereas a “2” sign indicates that it 
has not. After having examined the most important attri-
bute (A1), the options O2, O4, O5, and O8 are eliminated, 
because they fall short of the cutoff level. On the second 
most important attribute (A2), the options O3 and O7 are 
eliminated. On the third attribute, finally, option O1 is 
eliminated, and option O6 is chosen.

Table 3 contains the attribute ranks (AR) for each attri-
bute. The AR is the mean of all box ranks (where the first 
box opened has a box rank of 1, and so on). Generally, the 
lower the AR, the earlier that attribute has been looked 
at, whereas the attribute with the highest rank has been 
looked at most recently in the decision process. In addi-
tion, Table 3 lists the number of boxes that were opened 
for each attribute (NBOX). For example, in Table 3, eight 
boxes were opened on the first attribute, and four boxes 
on the second attribute.

EBA, LEX, and REC imply that the lower the AR, the 
greater the number of boxes that have been opened. That is, 
we expect a negative correlation between AR and NBOX. 
As was expected, the Pearson correlation coefficient yields 
a value of 21.0 for the matrix in Table 3. The decision strat-
egies ADD, DOM, EQW, LIM, LVA, MAJ, MAU, and MCD 
have a consistent information acquisition pattern across 
attributes. Consequently, the number of boxes opened for 
each attribute is a constant factor. Therefore, the correla-
tion between AR and number of boxes opened for each at-
tribute is expected to be zero. In the cases of DIS and SAT, 
the correlation coefficient can be either negative or zero. 
However, compared with EBA, LEX, and REC, their search 
pattern is option-wise, rather than attribute-wise. In sum, 
Metric 3, which implies a negative correlation between AR 
and NBOX and attribute-wise search, enables identifying 
EBA, LEX, and REC precisely.

Metric 4: Rank order of options. Metrics 1, 2, and 3 
are process-tracing measures. Metric 4, in contrast, is 
an outcome-based measure that focuses on the end re-
sult of a decision process and relates the final decision 
to properties of the decision problem (also referred to as 
structural modeling; Svenson, 1983). Participants taking 
part in a multiattribute decision task can state their final 
response in two different ways: They can (1) choose one 
single option or (2) state a rank order of options (Billings 
& Scherer, 1988).12 In addition, they often state attribute 
weights before or after a decision task is completed (e.g., 
Klayman, 1983; Slovic & Lichtenstein, 1971).

By knowing the utility values of the boxes, ADD, 
EQW, LVA, MAJ, and MCD can predict a person’s rank 
order of options. If a participant’s attribute weights are 
known in addition, LIM and MAU allow for equivalent 
predictions. Thus, we can compare the theoretically pre-
dicted rank order of options with a participant’s stated 
rank order of options—that is, the empirical rank order 
of options.13 By calculating a participant’s rank devia-
tion for each of these strategies, we can infer his or her 
strategy (Equation 5):

 Rank Deviation
i

o

= −
=
∑ (RP RE) ,2

1
 (5)

of attributes, and we assume that a participant’s short-term 
memory has a limited capacity to keep the utility values in 
mind (Miller, 1956).10

Equation 4 shows how to calculate the number of op-
tions looked at altogether when using ADD or MCD:

 NO 5 2 * (o 2 1), (4)

where NO represents the number of options looked at and 
o represents the number of options in the choice matrix.

For EBA and LEX, it is possible to predict that the ratio 
of time spent on options is not 1:1: . . . :1, because the 
participant eliminates options during the decision process. 
For DIS and SAT, the ratio of time spent on options cannot 
be predicted, because these two decision strategies imply 
an option-wise search and the participant’s cutoff levels 
are unknown. Consequently, we cannot predict when the 
search process stops.

Klayman (1982) proposed using dichotomous util-
ity values such as “good” and “bad” (rather than n-ary 
utility scales) to detect decision strategies that use cutoff 
levels (e.g., DIS or SAT). This procedure is based on the 
assumption that a “good” value is a passing value and a 
“bad” value is a failing value. However, Ford et al. (1989) 
found in their review that only 4 out of 45 process-tracing 
studies used dichotomous cues in the way proposed by 
Klayman (1982). We believe that this finding represents 
evidence that researchers regard the exclusive usage of 
dichotomous cues as a procedure that may increase the 
artificiality of the decision situation, which in turn may re-
sult in a decreased level of external validity of the research 
findings. The development of our classification method 
is based on the assumption of using n-ary utility scales, 
rather than dichotomous cues.

Metric 3: Correlation between attribute rank and 
number of boxes opened for each attribute. EBA, 
LEX, and REC (1) search for information attribute-wise 
rather than option-wise, (2) examine a varying amount of in-
formation for each attribute, and (3) eliminate options prior 
to the final choice (see Table 1). In the following, we will 
demonstrate how to use these characteristics to distinguish 
EBA, LEX, and REC from the other decision strategies.11

Table 3 shows an EBA simulation (Klayman, 1983), 
which is based on a matrix consisting of eight options and 
five attributes. A box containing a number indicates that 
it was opened, whereas an empty box indicates that it was 
not. The first box opened gets the box rank 1, the second 
box opened gets the box rank 2, and so on. A “1” sign 

Table 3 
Simulation for Metric 3 Using 

the Elimination-by-Aspects Strategy

  O1  O2  O3  O4  O5  O6  O7  O8  AR  NBOX

A1 11 22 31 42 52 61 71 82 4.5 8
A2 121 112 101 92 10.5 4
A3 132 141 13.5 2
A4 2 0
A5 2 0

Note— Source: Klayman, 1983, p. 404. O, option; AR, attribute rank; 
NBOX, number of boxes opened for each attribute; A, attribute; “1,” 
value is above the cutoff level; “2,” value is below the cutoff level.
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est utility value on the most important attribute (for REC, 
name recognition represents the most important attribute), 
one can infer that LEX (or REC) was used. If there is not 
one but, rather, two or more options with a highest value 
on the most important attribute (in other words, if there is 
a tie), and if a person selects the option with the highest 
utility value on the second most important attribute, LEX 
(or REC) was used again, and so on.

Table 4 characterizes all 13 decision strategies. We used 
Characteristics 1 and 2 for Metric 1, Characteristics 3 
and 4 for Metric 2, Characteristics 2, 3, and 5 for Metric 3, 
and Characteristics 1 and 6 for Metric 4 (see Table 1).

Although we did not use characteristics 7, 8, and 9 here-
after, they can be used in further investigations. Charac-
teristic 7 concerns cutoff (aspiration) levels. To increase 
external validity, we use n-ary, rather than dichotomous, 
utility values. However, using dichotomous, rather than 
n-ary, utility values (e.g., “good” and “bad”) allows for 
detecting strategies that imply cutoff levels (e.g., DIS or 
SAT). This is based on the assumption that a “good” util-
ity value exceeds a cutoff level, whereas a “bad” utility 
value falls short of a cutoff level. Characteristic 8 concerns 
whether a strategy is compensatory or noncompensatory; 
Characteristic 9 concerns whether a strategy uses quantita-
tive or qualitative reasoning. Consider a participant’s ver-
bal protocol describing a decision process that is both com-
pensatory and quantitative (Payne, 1976, p. 378). Such a 
protocol allows eliminating DIS, DOM, EBA, LEX, LIM, 
LVA, REC, and SAT, because none of these strategies is 
both compensatory and quantitative (Table 1).

where o represents the number of options in the choice ma-
trix, RP denotes the predicted rank order, and RE denotes 
the empirical rank order of options. That is, the lower the 
rank deviation, the more likely it is that a particular deci-
sion strategy was used.

For example, consider a matrix consisting of four op-
tions and four attributes (Figure 3). The boxes contain util-
ity values ranging from 1 (very poor) to 5 (very good ), the 
“weights” column contains a participant’s stated attribute 
weights, and the “RE” row contains his or her empirical 
(stated) rank order of options. The “RP” rows show the 
predicted rank orders of EQW, MAU, LVA, and LIM. Ap-
plying Equation 5 to each strategy, one gets the rank de-
viation of 18 for EQW, 12 for MAU, 2 for LVA, and 12 
for LIM. That is, our outcome-based Metric 4 suggests 
that the participant used LVA, since it has the lowest rank 
deviation.

In addition to ADD, EQW, LIM, LVA, MAJ, MAU, and 
MCD, for which we can predict the theoretical rank order 
of options, SAT can also be linked to a participant’s cho-
sen option. SAT selects the first option that surpasses all 
cutoff values (Simon, 1955). If a participant requires, for 
instance, that a satisfactory option must surpass five cut-
off values, the participant will dismiss an option as soon as 
any of the five attribute values falls short of a cutoff value. 
SAT cannot predict a rank order of options. It predicts, 
however, that people choose the option with the highest 
number of boxes opened.

LEX and REC can also be identified by a person’s cho-
sen option. If a person selects the option with the high-

Figure 3. Simulations of Metric 4 using the equal weights strategy (EQW), the multi-
attribute utility model (MAU), the least variance heuristic (LVA), and the least impor-
tant minimum heuristic (LIM). Box entries of the matrix (upper half) represent utility 
values (1 5 very poor, 5 5 very good). O, option; A, attribute; RE, empirical rank order 
of options; RP, predicted rank order of options.

O1

A1 5

A2 3 3 5 1 .05

A3

A4

2

1

3

3

5

3

2

5

.25

.20

RE 1 2 3 4

O2 O3 O4 Weights

3 1 5 .50

RP (EQW) 4 13 2

RP (MAU) 2 43 1

RP (LVA) 2 31 4

RP (LIM) 2 43 1
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Algorithm of DecisionTracer. So far, we have pre-
sented four new metrics. How can we use these metrics to 
identify decision strategies? We suggest using the metrics 
in a serial way (for parallel algorithms, see Biggs, Bedard, 
Gaber, & Linsmeier, 1985; Jarvenpaa, 1989; Todd & Ben-
basat, 1987). That is, we apply a top-down approach that 
uses one metric after the other to identify decision strate-
gies. We acknowledge that other ways of combining our 
measures are possible. By proposing one possible way of 
combing our measures, we demonstrate the usefulness of 
our approach.

Figure 4 shows an algorithm including our four metrics in 
conjunction with the probably most fundamental process-
 tracing metric—namely, direction of search (Böckenholt & 
Hynan, 1994; Payne, 1976).14 We developed a Java-based 
computer program, called DecisionTracer, that is based on 
the algorithm in Figure 4. DecisionTracer allows the iden-
tification of each person’s preferred strategy in a nonrisky 
multiattribute decision-making environment by narrowing 
down the set of potential decision strategies.15

Conclusion, Limitations, and Applications
Extending previous research, we developed four met-

rics and combined them with existing measures into an 
algorithm for identifying people’s decision strategies. In 
our view, this approach offers two advantages. Rather than 
identifying broad classes of decision processes, such as 
whether or not they are compensatory or noncompensa-
tory, our approach allows for a more fine-grained identi-
fication by detecting precisely defined decision strategies. 
Second, our method assigns a predominant strategy (or 
in some cases, a predominant strategy pair) to each indi-
vidual. The presented classification method can be used 
in the future to relate properties of the decision problem, 
such as decision complexity (i.e., size of the matrix) or 
time pressure, to decision strategies. In doing so, we hope 
to get a better understanding of the cognitive processes 
underlying human decision making in different contexts.

In this article, we tried to present a broad range of deci-
sion strategies. Although we consider our list of 13 strat-
egies fairly comprehensive, we acknowledge that other 
strategies exist (Gigerenzer & Goldstein, 1996; H. Mont-
gomery & Svenson, 1976; Svenson, 1979).

Our classification method (Figure 4) assumes that each 
decision maker uses one strategy exclusively. However, 
although it is possible that they follow a particular strategy 
exactly, decision makers are usually not such theoretical 
purists (G. J. Cook, 1993; Klayman, 1985; H. Montgom-
ery & Svenson, 1976; Svenson, 1979). During the deci-
sion process, different information acquisition patterns 
arise sequentially. For example, Payne (1976) found that 
with choice tasks involving a large number of options, 
a decision maker’s information acquisition pattern was 
attribute-wise (to reduce the set of options), and then he or 
she shifted to an option-wise pattern to make a final deci-
sion (see also Ball, 1997; Bettman & Park, 1980; Billings 
& Marcus, 1983; Ford et al., 1989; Gensch, 1987; Johnson 
& Payne, 1985; Olshavsky, 1979; Todd & Benbasat, 1991; 
Wright & Barbour, 1977). Such different patterns indicate 
different decision strategies.
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verbal protocols, however, it is possible to identify each 
strategy of the four pairs precisely.

Our measures are limited by the assumption that people 
closely follow a strategy’s algorithm. In the case of MAU, 
for instance, we assume—in line with the process-tracing 
literature (e.g., Payne et al., 1993)—that people search 
option-wise, rather than attribute-wise, because MAU 
chooses the option with the highest weighted overall util-
ity score. Theoretically, however, a person may search 
attribute-wise, remember all attribute utilities, calculate 
the sum of weighted attribute utilities for each option, and 
choose the option with the highest score. Limited capacity 
of short-term memory (Miller, 1956), however, renders 
attribute-wise search unlikely.

We believe that our work is of high relevance not only for 
computerized process-tracing methods, but also for eye-
tracking and clickstream studies. Consider, for example, 
a decision situation in which information is presented in a 
matrix-like format on a computer screen and information 
acquisition is registered by eyetracking. Our classification 
method may help identify which people use which strat-
egy in which situation. Understanding people’s decision 
processes enables practitioners developing better decision 
support systems. Consider, for instance, the design of In-
ternet shops. If marketers and software engineers know 
their potential customers’ preferred decision strategies, 
they can tailor online shops that actively support custom-
ers’ decision-making processes (for recent research, see 
Cothey, 2002; Jaillet, 2002; Johnson, Moe, Fader, Bellman, 
& Lohse, 2004; Lohse & Spiller, 1998; A. L. Montgomery 
et al., 2004; Venkatesh & Agarwal, 2006).

Finally, our classification method can also be used in 
combination with clickstream data. Within consumer 
behavior, research programs have started investigating 
clickstream data, which represent a person’s information 
acquisitions within a Web site (Awad, Jones, & Zhang, 
2006; Bucklin & Sismeiro, 2003; Chatterjee, Hoffman, 
& Novak, 2003; Cothey, 2002; Jaillet, 2002; Johnson 
et al., 2004). Imagine, for instance, a study in which par-
ticipants are taking part in a choice matrix experiment 
using Decision Tracer. In addition, the same people are 
participating in a study with a quasiexperimental design in 
which the task is to buy a product in an Internet shop. As a 
result of the quasiexperiment, we can obtain data on click-
streams, amount of money spent, shopping time, stopping 
behavior, or satisfaction with the Internet shop. Knowing 
a person’s predominant decision strategy (e.g., MAU), in 
combination with clickstreams and the like, is important 
for practitioners because tailor-made online shops may 
positively affect ease of use, customers’ decision times, 
the likelihood of buying, and finally the retailer’s turnover. 
Our multimethod approach, we think, offers one promis-
ing way to reach these goals.
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The objective of our classification method was to find 
decision makers’ strategies that were used during the entire 
decision process. To find people’s sequential use of strate-
gies, one can split the entire decision process into several 
parts by dividing the total decision time into time blocks 
(G. J. Cook, 1993; Svenson, 1979; van Raaij, 1976). Fur-
thermore, one may combine quantitative (computerized-
process tracing or eyetracking) and qualitative (verbal 
protocols) process-tracing techniques (e.g., Payne, 1976). 
Considering this, one possible way to identify blends 
of decision strategies would be to use our classification 
method in conjunction with verbal protocols.

In this article, we developed a process- and outcome-
based classification method that incorporates three 
process- based metrics. Hence, the value of the classifica-
tion method depends on the validity of process-tracing 
assumptions. The main assumptions are, first, when a 
participant opens a box of the choice matrix, this infor-
mation is assumed to be processed at a cognitive level. 
Second, a decision maker’s attention to a particular utility 
value reflects the search for a piece of information, which 
is a necessary constituent of a specific decision strategy 
(Svenson, 1979).

Process-tracing approaches offer the advantage of not 
requiring participants to be conscious of or formulate 
their mental processes underlying choice behavior. Hayek 
(1962) made a clear-cut statement:

While we are clearly often not aware of mental pro-
cesses because they have not yet risen to the level of 
consciousness but proceed on what are (both physi-
ologically and psychologically) lower levels, there 
is no reason why the conscious level should be the 
highest level, and many grounds which make it prob-
able that, to be conscious, processes must be guided 
by a supra-conscious order which cannot be the ob-
ject of its own representations. Mental events may 
thus be unconscious and uncommunicable because 
they proceed on too high a level as well as because 
they proceed on too low a level. (p. 340)

Unlike think-aloud protocols, DecisionTracer, similar 
process-tracing tools (e.g., Mouselab), and eyetracking 
systems register information acquisition without the need 
of verbalization.

In four cases, our classification method cannot distin-
guish between decision strategy pairs: DIS/SAT, DOM/
MAJ, ADD/MCD, and EBA/LEX. All other decision strat-
egies, however, can be identified precisely (see Figure 4). 
Both DIS and SAT use aspiration levels. Intuitively, a per-
son using SAT is likely to open more boxes in the matrix 
than is a person using DIS. MAJ can be considered as a 
special case of DOM. If no dominant option exists, MAJ 
selects the option with the highest number of dominant 
attribute values. Similarly, MCD is a special case of ADD, 
since MCD implies a rank scale and ADD an interval scale. 
Finally, since it is possible that EBA and LEX may have 
identical information acquisition patterns, a distinction 
with current quantitative process-tracing methods is not 
possible. By using DecisionTracer in combination with 
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NOTES

1. Ford et al. (1989, p. 88), in a review of 45 process-tracing studies, 
identified the work of Wilkins (1964) as the oldest one.

2. Computerized process tracing can be considered as the computer-
assisted version of information display boards. Programs that were de-
veloped in the early stages of information technology—that is, in the 
late 1970s and 1980s—are not explicitly listed above (see, e.g., Brucks, 
1988; Dahlstrand & Montgomery, 1984; Payne & Braunstein, 1978).

3. Nonrisky means that outcomes are for sure and, therefore, there 
are no probability statements, as in the case of gambles. In the case of 
an information display matrix, the outcomes are the attribute values or 
utilities in the boxes of the matrix.

4. But compare, for example, Covey and Lovie (1998), who present a 
multi method approach in the field of risky decision making.

5. If a strategy selects two or more options, guessing is assumed.
6. We use a slightly different version of REC, as compared with Gold-

stein and Gigerenzer (2002, p. 76), because their original version was de-
veloped for binary choices only, whereas our definition includes choice 
situations with two or more options available.

7. Simulation, in the context of this article, means imitation of real 
information acquisition behavior (Klayman, 1982).


